Evidence for a perturbation of arginine-82 in the bacteriorhodopsin photocycle from time-resolved infrared spectra.
نویسندگان
چکیده
Arginine-82 (R82) of bacteriorhodopsin (bR) has long been recognized as an important residue due to its absolute conservation in the archaeal rhodopsins and the effects of R82 mutations on the photocycle and proton release. However, the nature of interactions between R82 and other residues of the protein has remained difficult to decipher. Recent NMR studies showed that the two terminal nitrogens of R82 experience a highly perturbed asymmetric environment during the M state trapped at cryogenic temperatures [Petkova et al. (1999) Biochemistry 38, 1562-1572]. Although previous low-temperature FT-IR spectra of wild-type and mutant bR samples have demonstrated effects of R82 on vibrations of other amino acid side chains, no bands in these spectra were assignable to vibrations of R82 itself. We have now measured time-resolved FT-IR difference spectra of bR intermediates in the wild-type and R82A proteins, as well as in samples of the R82C mutant with and without thioethylguanidinium attached via a disulfide linkage at the unique cysteine site. Several bands in the bR --> M difference spectrum are attributable to guanidino group vibrations of R82, based on their shift upon isotope substitution of the thioethylguanidinium attached to R82C and on their disappearance in the R82A spectrum. The frequencies and intensities of these IR bands support the NMR-based conclusion that there is a significant perturbation of R82 during the bR photocycle. However, the unusually low frequencies attributable to R82 guandino group vibrations in M, approximately 1640 and approximately 1545 cm(-)(1), would require a reexamination of a previously discarded hypothesis, namely, that the perturbation of R82 involves a change in its ionization state.
منابع مشابه
Infrared and visible absolute and difference spectra of bacteriorhodopsin photocycle intermediates.
We have used new kinetic fitting procedures to obtain infrared (IR) absolute spectra for intermediates of the main bacteriorhodopsin (bR) photocycle(s). The linear-algebra-based procedures of Hendler et al. (J. Phys. Chem. B, 105, 3319-3228 (2001)) for obtaining clean absolute visible spectra of bR photocycle intermediates were adapted for use with IR data. This led to isolation, for the first ...
متن کاملFurther studies with isolated absolute infrared spectra of bacteriorhodopsin photocycle intermediates: conformational changes and possible role of a new proton-binding center.
We recently published procedures describing the isolation of absolute infrared spectra for the intermediates of the bacteriorhodopsin (BR) photocycle and from these, obtaining transitional difference spectra between consecutive intermediates. In that work, we concentrated mainly on proton-binding centers and the route of proton transport across the membrane. In the current study, we used isolat...
متن کاملStructure changes upon deprotonation of the proton release group in the bacteriorhodopsin photocycle.
In the photocycle of bacteriorhodopsin at pH 7, a proton is ejected to the extracellular medium during the protonation of Asp-85 upon formation of the M intermediate. The group that releases the ejected proton does not become reprotonated until the prephotolysis state is restored from the N and O intermediates. In contrast, at acidic pH, this proton release group remains protonated to the end o...
متن کاملIndependent photocycles of the spectrally distinct forms of bacteriorhodopsin.
Time-resolved, flash-induced difference absorbance spectra (300-700 nm) at pH 10.5 and 5 degrees C for the bacteriorhodopsin photocycle fast and slow decaying forms of the M intermediate (M(f) and M(s), respectively) and R intermediate are reported. The main distinguishing features are as follows: For M(f), DeltaA(max) = 412 nm, a shoulder at 436 nm, no absorbance change at 350 nm; DeltaA(min) ...
متن کاملSingular value decomposition with self-modeling applied to determine bacteriorhodopsin intermediate spectra: analysis of simulated data.
An a priori model-independent method for the determination of accurate spectra of photocycle intermediates is developed. The method, singular value decomposition with self-modeling (SVD-SM), is tested on simulated difference spectra designed to mimic the photocycle of the Asp-96 --> Asn mutant of bacteriorhodopsin. Stoichiometric constraints, valid until the onset of the recovery of bleached ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 39 43 شماره
صفحات -
تاریخ انتشار 2000